
BOUNDING CRYSTALLINE TORSION FROM ÉTALE TORSION

OFER GABBER AND SHIZHANG LI

Abstract. In this note, we prove that given a smooth proper family over a p-adic ring of integers, one gets
a control of its crystalline torsion in terms of its étale torsion, the cohomological degree, and the ramification.
Our technical core result is a boundedness result concerning annihilator ideals of u∞-torsion in Breuil–Kisin
prismatic cohomology, which might be of independent interest.
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1. Introduction

Let p be a prime. Let OK be a complete DVR of mixed characteristic (0, p) with perfect residue field
k. Let X be a smooth proper formal scheme over Spf(OK). We are interested in the interplay between
two torsion phenomena associated with X : the étale torsion Hi

ét(XK̄ ,Zp)tors and the crystalline torsion
Hi

crys(Xk/W (k))tors. In Bhatt–Morrow–Scholze’s first paper [BMS18], one learns the following:

Theorem 1.1 ([BMS18, Theorem 1.1.(ii)]). There is an inequality

length
(
Hi

ét(XK̄ ,Zp)tors
)
≤ length

(
Hi

crys(Xk/W (k))tors
)
.

In particular, if Hi
crys(Xk/W (k))tors = 0, then Hi

ét(XK̄ ,Zp)tors = 0.

It is natural to wonder about the converse question: if Hi
ét(XK̄ ,Zp)tors = 0, then what can we say about

Hi
crys(Xk/W (k))tors? The Künneth formula and examples in [BMS18, Section 2] shows that one cannot get any

bound on the length of the Hi
crys(Xk/W (k))tors. In this paper we show that one can get a bound of the exponent

of the Hi
crys(Xk/W (k))tors, defined as the smallest natural number m such that pm ·Hi

crys(Xk/W (k))tors = 0.

Theorem 1.2 (= Theorem 4.8). There is a constant c(e, i) depending only on the ramification index e = vK(p)
and the cohomological degree i > 0, such that there is an inequality

exp(Hi
crys(Xk/W )tors) ≤ exp(Hi

ét(XC ,Zp)tors) + c(e, i).

Our technical tool is a generalization of some results in [LL23], concerning the annihilator ideal of u∞-torsion
in prismatic cohomology of X . This is the content of our Section 2. In Section 4, we give some applications of
the bound of aforementioned annihilator ideals, and end with a proof of the above theorem.

Notations and Conventions. Let k be a perfect field of characteristic p, let W = W (k) be its (p-typical)
Witt ring. Denote S := W [[u]] equipped with (u, p)-adically continuous Frobenius φ : S → S such that φ|W is
the usual Witt vector Frobenius and φ(u) = up. Lastly let E(u) ∈ S be an Eisenstein polynomial of degree e.

1
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2. Some commutative algebra arguments

Throughout this section, we shall consider the following situation.

Situation 2.1. Let J ⊂ S be an ideal and let j ∈ N, satisfying
(1) the ideal J is cofinite, namely (p, u)N ⊂ J for some N ; and
(2) we have a containment relation Ej · J ⊂ φ(J) ·S.

In this situation, let us denote J + (p) = (p, uσ) and J + (u) = (u, pρ). It is easy to see that σ ≤ ⌊ e·j
p−1⌋, see

for instance the proof of [LL23, Corollary 3.4].

The aim of this section is to give explicit estimate of ρ in terms of e and j.

2.1. Argument one. In this subsection, we present the first argument.

Notation 2.2. Let c(a, b) := min{c ∈ N | pc ∈ (ua, Eb)}.

Lemma 2.3. We have that c(a, b) ≤ ⌈a
e ⌉+ b− 1.

Proof. By assumption E = ue + p · unit, so p ∈ (ue, E). More generally we have px+y−1 ∈ (uex, Ey). □

Lemma 2.4. Let J ⊂ S and j ∈ N be as in Situation 2.1. Suppose that J + (ua) ⊂ (ua, pN ), then

J ⊂ (uA, pmax
(
0,N−c(A,j)

)
) for any natural number A ≤ pa.

Proof. In the ring R := S/uA, we have

pc(A,j) · JR ⊂ Ej · JR ⊂ φ(J) ·R ⊂ (pN ).

Our claim follows from the fact that the sequence (u, p) is S-regular. □

Proposition 2.5. Let J ⊂ S and j ∈ N be as in Situation 2.1. Let a1, a2, . . . , an be a sequence of integers
satisfying

(1) a0 = 1;
(2) ai ≤ p · ai−1;
(3) an > e·j

p−1 .

Then ρ ≤
∑n

i=1 c(ai, j).
In particular, if e · j < pn(p− 1), then we may choose ai = pi for i ≤ (n− 1) and an = ⌊ e·j

p−1⌋+ 1, hence

ρ ≤
∑n−1

i=1 ⌊
pi

e ⌋+ ⌊ ⌊ e·j
p−1 ⌋+1

e ⌋+ nj.

Proof. The second sentence follows from the first one and Lemma 2.3 as ⌈x⌉− 1 < x. To see the first sentence:
Let J + (u) = (u, pρ), and assume to the contrary that ρ >

∑n
i=1 c(ai, j). Then applying Lemma 2.4, we see

that J + (ua1) ⊂ (ua1 , pρ−c(a1,j)). Applying Lemma 2.4 again, we see that J + (ua2) ⊂ (ua2 , pρ−c(a1,j)−c(a2,j)).
Repeating the above, we finally see that J + (uan) ⊂ (uan , p>0). But this contradicts to the fact that
J + (p) = (p, uσ) with σ ≤ e·j

p−1 < an. □

2.2. Argument two. In this subsection, we present the second argument. Throughout the subsection, let
J ⊂ S and j ∈ N be as in Situation 2.1.

Lemma 2.6. Let r ∈ [0,∞) be a real number, the following map

vr : S \ {0} → R, vr(
∑
i

aiu
i) := min{ordp(ai) + i · r}

defines an additive valuation.

Proof. It is easy to check that minimum is always attained, one can check the triangle inequality

vr

(
(
∑
i

aiu
i) + (

∑
i

biu
i)

)
≥ min

(
vr(
∑
i

aiu
i), vr(

∑
i

biu
i)

)
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using the definition. Lastly we need to check multiplicativity:

vr

(
(
∑
i

aiu
i) · (

∑
i

biu
i)

)
= vr(

∑
i

aiu
i) + vr(

∑
i

biu
i).

One checks directly that the multiplicativity holds true if one of the power series is just a monomial. Now let
α := min{i ∈ N | ordp(ai) + i · r = vr(

∑
i aiu

i)} and β := min{i ∈ N | ordp(bi) + i · r = vr(
∑

i biu
i)}. Using

the definition, one checks that

vr

(
∑
i≥α

aiu
i) · (

∑
i≥β

biu
i)

 = vr(
∑
i

aiu
i) + vr(

∑
i

biu
i).

Finally, by combining
• the case of one of the power series being a monomial;
• the decompositions

∑
i aiu

i =
∑

i<α aiu
i +

∑
i≥α aiu

i and
∑

i biu
i =

∑
i<β biu

i +
∑

i≥β biu
i of the

two power series;
• the above equality; and
• the triangle inequality,

one arrives at the multiplicativity statement which finishes the proof. □

One may view the ring S as the analytic functions bounded by 1 on the open unit disc D◦
W [1/p], then the

valuation vr corresponds to the Gauss norm on the radius p−r disc (the absolute value is normalized so that
|p| = p−1). Notice that for r > 0, we can take a rational number s ∈ (0, r], so the said Gauss norm is a rank 1
point on the closed disc of radius p−s around 0. Therefore, we may view it as a rank 1 point on the open unit
disc, giving rise to a norm on S[1/p] whose restriction to S is bounded by 1.

Notations 2.7. For any co-finite ideal I ⊂ S, let fI(r) := vr(I), viewed as a function fI : [0,∞) → R≥0. Let
Imon := the ideal generated by {aiui |

∑
i aiu

i ∈ I}.

Namely for every power series in I, we extract out all of its monomial terms, then we use all these monomial
terms of all elements in I to generate a (most likely larger) ideal. Note that Imon is generated by finitely
many monomial terms as S is Noetherian.

Lemma 2.8. Let I ⊂ S be a co-finite ideal, we have natural numbers σ and ρ satisfying I + (p) = (p, uσ)
and I + (u) = (u, pρ). Then the function fI satisfies the following:

(1) We have an equality fI = fImon ;
(2) The function fI is concave and continuous;
(3) The function fI is piecewise linear, on each interval it is given by a · r + b with both a and b natural

numbers;
(4) There exists an ϵ > 0, such that

fI(r) =

{
σ · r, r ∈ [0, ϵ],

ρ, r ∈ [1/ϵ,∞).

(5) We have an equality fφ(I)(r) = fI(p · r).

Proof. (1) and (5) follows from the definition of vr. Our assumption implies that

Imon = (pρ, a1 · u, a2 · u2, . . . , aσ−1u
σ−1, uσ),

where ordp(ai) > 0 (and ai is allowed to be 0). For each of the generators above, if we look at their vr as
a function in r, we simply get a linear function with a natural number slope. The function fI = fImon is
minimum of the above collection of linear functions, this immediately gives us (2) and (3). Using (1) and the
definition of vr, we also see that vr(I) = vr(u

σ) if r is sufficiently near 0 and vr(I) = vr(p
ρ) if r ≫ 0, which

proves (4). □

Lemma 2.9. Let J ⊂ S and j ∈ N be as in Situation 2.1. We have
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(1) the function g(r) := vr(E
j) = min

(
(e · j) · r, j

)
; and

(2) an inequality fJ(p · r) ≤ fJ(r) + g(r).

Proof. (1) easily follows from our assumption on the degree e Eisenstein polynomial E. (2) follows from the
assumption Ej · J ⊂ φ(J) ·S and Lemma 2.8.(5). □

Lemma 2.10. Let J ⊂ S and j ∈ N be as in Situation 2.1. Define a piecewise linear function

h(r) =



σ · r, r ∈ [0, p·j
σ·(p−1) ]

σ
p · r + j, r ∈ [ p·j

σ·(p−1) ,
p2·j

σ·(p−1) ]
σ
p2 · r + 2 · j, r ∈ [ p2·j

σ·(p−1) ,
p3·j

σ·(p−1) ]

. . .
σ
pn · r + n · j, r ∈ [ pn·j

σ·(p−1) ,
pn+1·j
σ·(p−1) ]

. . .

.

Then we have fJ(r) ≤ h(r).

We leave it to the readers to check that the h(r) above is continuous, concave and increasing.

Proof. Let us check inductively on each interval that fJ (r) ≤ h(r). For the first interval [0, p·j
σ·(p−1) ], we need

to show fJ(r) ≤ σ · r, this follows from Lemma 2.8.(2)-(4). Now we prove the induction step, so we assume
that fJ(x) ≤ h(x) whenever x ∈ [0, pn·j

σ·(p−1) ] and let r ∈ [ pn·j
σ·(p−1) ,

pn+1·j
σ·(p−1) ]. Our assumption on r implies that

fJ(
r
p ) ≤ h( rp ) =

σ
pn−1 · r

p + (n− 1) · j. By Lemma 2.9, we see that

fJ(r) ≤ fJ(
r

p
) + j ≤ σ

pn−1
· r
p
+ (n− 1) · j + j =

σ

pn
· r + n · j = h(r).

□

Lemma 2.11. Let J ⊂ S and j ∈ N be as in Situation 2.1. Then fJ(r) = ρ whenever r ≥ p·j
p−1 .

Proof. Let us denote by f ′
J (r) the left derivative of fJ (r), this is a piecewise constant, decreasing, eventually 0

function, which takes values in natural numbers, thanks to Lemma 2.8.(2)-(4). Therefore all we need to show
is that f ′

J(r) = 0 for r > p·j
p−1 . Now Lemma 2.9 implies that f ′

J(r) · (r − r
p ) ≤ fJ(r)− fJ(

r
p ) ≤ j. Therefore

f ′
J(r) < 1 and is a natural number, hence must be 0. □

Proposition 2.12. Let J ⊂ S and j ∈ N be as in Situation 2.1. If e · j ≤ pn(p − 1), then we have

ρ ≤ ( σ
pn−1(p−1) + n) · j ≤ (

⌊ e·j
p−1 ⌋

pn−1(p−1) + n) · j.

Proof. By Lemma 2.11, we have ρ = fJ (
p·j
p−1 ). Since σ ≤ ⌊ e·j

p−1⌋ ≤ pn, we see that p·j
p−1 ≤ pn+1·j

σ·(p−1) (and we only
need to prove the first inequality). Now by Lemma 2.10, we have

ρ = fJ(
p · j
p− 1

) ≤ h(
p · j
p− 1

) ≤ σ

pn
· p · j
p− 1

+ n · j = (
σ

pn−1(p− 1)
+ n) · j.

□

2.3. Conclusions. Let us first extract a concrete estimate of ρ in a special case.

Proposition 2.13. Let J ⊂ S be as in Situation 2.1, with j = 1, and let n ∈ N.
(1) If p ̸= 2 and e < pn(p− 1), then ρ ≤ n.
(2) If p = 2 and e < 2n, then ρ ≤ (n+ 1).

Note that when e ≤ (p − 1), our statement follows from the proof of [LL23, Proposition 3.5]. So in the
proof below, we always assume further that e > (p− 1), in particular n ≥ 1.

Proof. First let us assume that p ̸= 2. Suppose that e < pn−1(p− 1)2, then by Proposition 2.12, we see that
the integer ρ < n+ 1, therefore ρ ≤ n. If pn−1(p− 1)2 ≤ e < pn(p− 1), then
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• we have ⌊pi

e ⌋ = 0 for all 0 ≤ i ≤ (n− 1) as p ̸= 2;

• similarly ⌊ ⌊ e
p−1 ⌋+1

e ⌋ ≤ ⌊ 1
p−1 + 1

e⌋ = 0, as we have assumed that e > (p− 1).

Therefore by Proposition 2.5, we have that ρ ≤ n.
Now in case p = 2, the relevant formulas simplify. When 2n−1 < e < 2n, we get ρ ≤ (n + 1) by

Proposition 2.5. When e = 2n−1, we get ρ ≤ (n+ 1) by Proposition 2.12. □

Let us summarize the outcome of the previous two subsections.

Notation 2.14. For each pair of positive integers (e, j), we denote

d(e, j) := min

( n−1∑
i=1

⌊p
i

e
⌋+ ⌊

⌊ e·j
p−1⌋+ 1

e
⌋+ nj, (

⌊ e·j
p−1⌋

pn−1(p− 1)
+ n) · j

)
,

where n is the smallest natural number such that e · j < pn(p− 1).

Proposition 2.15. Let J ⊂ S and j ∈ N be as in Situation 2.1. Then we have ρ ≤ d(e, j).

Proof. Combine Proposition 2.5 and Proposition 2.12. □

2.4. Argument for boundedness. Lastly let us show that an additional condition gives rise to boundedness
of length of S/J .

Proposition 2.16. Let J ⊂ S and j ∈ N be as in Situation 2.1. Assume moreover that there is an ℓ ∈ N
such that Eℓ · φ(J) ⊂ J , then p(ρ+max(j,ℓ))·σ ∈ J . The additional assumption implies that length(S/J) ≤
(ρ+max(j, ℓ)) · σ2, in particular (u, p)(ρ+max(j,ℓ))·σ2 ⊂ J .

Proof. For any ideal I ⊂ S, we denote (I : p) := {f ∈ S | p · f ∈ I}. Alternatively, the ideal is defined via the
following exact sequence:

0 → (I : p) → S
·p−→ S/I.

Since (E, p) is a regular sequence, one checks that E · (I : p) = (E · I : p). Using the fact that φ is flat, one
checks that φ(I : p) = (φ(I) : p). Therefore if we let J0 = J and inductively define Ji = (Ji−1 : p) for all i ≥ 1,
then we can make the following observations:

(1) We have S/Jn
·pn

−−→∼= pn ·S/J , hence S/(Jn + (p))
·pn

−−→∼=
pn·S/J

pn+1·S/J ;

(2) The ideals Jn again satisfy conditions: Ej · (−) ⊂ φ(−) ·S and Eℓ · φ(−) ⊂ (−).
Our task is to show that Jn = S when n ≥ (ρ+max(j, ℓ))·σ. Letting σn and ρn be defined by Jn+(p) = (p, uσn)
and Jn + (u) = (u, pρn), it suffices to show that σi − σi+ρ+max(j,ℓ) ≥ 1. Since ρn is non-increasing, using the
observation (2) above, it suffices to prove the above with i = 0.

Suppose to the contrary we have 0 < σ0 = . . . = σρ+max(j,ℓ), we need to deduce a contradiction. This
assumption, together with the observation (1) above, implies that multiplication by p map on A := S/J
induces isomorphisms:

A/pA
·p−→∼= pA/p2A

·p−→∼= . . .
·p−→∼= pρ+max(j,ℓ)A/pρ+max(j,ℓ)+1A.

Weierstrass preparation and the definition of σ implies the existence of a polynomial f ∈ J such that
f ≡ uσ mod p. Since (f, p) is a regular sequence, one checks that the p-adic filtration on B := S/f also
satisfies B/pB

·p−→∼= pB/p2B
·p−→∼= . . .. Let us now look at the map S/(f, pρ+max(j,ℓ)+1) ↠ S/(J, pρ+max(j,ℓ)+1),

it is an isomorphism modulo p so, by the above knowledge of p-adic filtrations on both sides, it is an
isomorphism. Therefore we have J ≡ (f) mod pρ+max(j,ℓ)+1. Moreover the definition of ρ implies that the
constant term of f must have p-adic valuation ρ. Now our conditions imply that there exists polynomials
P (u), Q(u) ∈ W/pρ+max(j,ℓ)+1[u] such that we have equalities

E(u)j · f = φ(f) · P (u) and E(u)ℓ · φ(f) = f ·Q(u)
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in W/pρ+max(j,ℓ)+1[u]. Now the constant term of left hand side of both equations are nonzero in W/pρ+max(j,ℓ)+1,
therefore the Newton polygon of E(u)j ·f is the same as that of φ(f) · P̃ (u) where P̃ (u) ∈ W [u] is an arbitrary
lift of P (u). Consequently we see that there is an inclusion of sets:

{p-adic valuations of roots of φ(f)} ⊂ {p-adic valuations of roots of f} ∪ {1/e}.

Similarly we also have an inclusion of sets:

{p-adic valuations of roots of f} ⊂ {p-adic valuations of roots of φ(f)} ∪ {1/e}.

Since we have an equality of subsets of Q:

1/p · {p-adic valuations of roots of f} = {p-adic valuations of roots of φ(f)},

we arrive at the following contradiction:

{p-adic valuations of roots of f} ∪ {1/e} = (1/p · {p-adic valuations of roots of f}) ∪ {1/e}.

Therefore we see that we cannot have (ρ+max(j, ℓ)) many σ’s being all equal, which finishes the proof. □

3. Some prismatic cohomology facts

In this section, we recall some statements concerning torsion in prismatic cohomology. Let X be a smooth
proper formal scheme over Spf(OK).

Remark 3.1. Recall (see [BMS18, Proposition 4.3] and [BS22, Theorem 1.8.6]) that the prismatic cohomology
Mi := Hi

∆(X/S), being a Breuil–Kisin module, admits the following canonical exact sequences:

0 → Mi
tors = Mi[p∞] → Mi → Mi

tf → 0,

0 → Mi
tf → (Mi)∨∨ → Mi → 0,

where (Mi)∨∨ is the double dual (or reflexive hull) of Mi which is finite free over S and Mi is supported at
the closed point (p, u) of Spec(S).

The following result is the main reason why we studied the kind of ideal J in Situation 2.1.

Proposition 3.2. Let n ∈ N ∪ {∞}, denote Mi
n := Hi(RΓ∆(X/S)/Lpn)) (where n = ∞ means that we do

not perform the reduction at all). Then we have the following:
(1) For all i ≥ 0, there exists maps F : φ∗

SMi
n → Mi

n and V : Mi
n → φ∗

SMi
n such that both F ◦ V and

V ◦ F are the same as multiplication by Ei;
(2) For all i > 0, multiplication by Ei−1 on φ∗

SMi
n factors through a submodule of Mi

n.
In particular, when i > 0, let J be the annihilator ideal of Mi

n[u
∞]. Then the ideal J and (j, ℓ) = (i− 1, i)

satisfy the conditions in Situation 2.1 and Proposition 2.16.

When n = ∞, the statement (1) follows from [BS22, Theorem 1.8.(6)]. In general, both (1) and (2) follow
from the observation made in [LL23, Proposition 3.2]. For the convenience of the readers, let us sketch the
argument below.

Proof. Recall that the Frobenius-twisted prismatic cohomology admits Nygaard filtrations, see [BS22, Section
15]. In particular, for any j ≥ 0, there are natural maps RΓ(Xqsyn,FilN

j/pn) → φ∗
SRΓ(Xqsyn,∆/pn) and

φ∗
SRΓ(Xqsyn,∆/pn) → RΓ(Xqsyn,FilN

j/pn) such that compositions either way are the same as multiplica-
tion by Ej . Moreover these Nygaard filtrations admit divided Frobenius maps to prismatic cohomology:
RΓ(Xqsyn,FilN

j/pn)
φj−→ RΓ(Xqsyn,∆/pn).

By [LL25, Lemma 7.8.(3)], the induced map Hj(Xqsyn,FilN
j/pn)

φj−→ Hj(Xqsyn,∆/pn) is an isomorphism.
This gives (1) by considering i-th Nygaard filtration. Also by [LL25, Lemma 7.8.(3)], when j > 0, the induced
map Hj(Xqsyn,FilN

j−1/pn)
φj−1−−−→ Hj(Xqsyn,∆/pn) is injective. This gives (2) by considering (i−1)-st Nygaard

filtration. The last sentence is a consequence of (1) and (2). □
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Remark 3.3. Let us take the opportunity to correct an error in [LL25, Lemma 7.8.(3)]. The proof has a
gap in its last sentence: namely, when we use the same proof strategy to run the argument for proving the
derived mod pm versions, the cohomological estimate might be off by 1 cohomological degree due to p-torsion
in Ωi+1

X/(A/I), and this p-torsion subsheaf is nonzero exactly when A/I contains p-torsion (and X/(A/I) has
relative dimension at least i+ 1). Therefore, by the proof strategy of loc. cit. we get the following conclusion:
The statement of [LL25, Lemma 7.8.(1)-(3)] is correct as is, but for their derived mod pm analogs, one needs
an extra assumption that (A, I) is a transversal prism (namely A/I is p-torsion free). So, one just needs to
change the last sentence to “Moreover their derived mod pm counterparts hold as long as (A, I) is transversal.
Fortunately, the Breuil–Kisin prism is an example of such, which justifies our usage of [LL25, Lemma 7.8.(3)]
in the above proof. Lastly we point out that in the proof of [LL25, Lemma 7.8.(3)], the authors give a reference
to [BS22, Theorem 15.2.(2)] for the cohomological estimate, but the more appropriate reference seems to be
rather [BS22, Theorem 15.3].

The rest of this section concerns the Ainf cohomology defined in [BMS18, Theorem 1.8], let us recall some
key definitions and properties below.

Notations 3.4. Let C be the completion of an algebraic closure of K, with its tilt C♭ defined as follows:
Consider the ring of integers OC ⊂ C, then define O♭

C := limφ(OC/p). Given a sequence of elements {xi}i∈N
of OC/p satisfying xp

i = xi−1, we denote by x its corresponding element in O♭
C . It is a fact that O♭

C is a rank 1

valuation ring, whose fraction field Frac(O♭
C) =: C

♭ is an algebraically closed complete non-archimedean field
of equal characteristic p. The maximal ideal of O♭

C is given by m♭
C = {x ∈ O♭

C | x0 ∈ mC/(p · OC) ⊂ OC/p}.
For more on this, we refer readers to [Sch12, Section 3].

Fix a choice of compatible p-power primitive roots of unity (1, ζp, ζp2 , · · · ), then the sequence {ζpi}i∈N
defines an element ϵ ∈ O♭

C . The Fontaine period ring Ainf is defined as the (p-typical) Witt ring of O♭
C ,

equipped with Frobenius automorphism φ. The following two elements µ := [ϵ]− 1 and ξ̃ = φ(ξ) = φ(µ)
µ in

Ainf are important to us.

In the rest of this section C can be any algebraically closed complete non-archimedean field of mixed
characteristic (0, p).

Remark 3.5. Let X be a smooth proper formal scheme over Spf(OC) with its rigid generic fiber X := XC .
There is a natural map of sites ν : Xproét → XZar, then according to [BMS18, Definition 8.1 and 9.1], one
defines

AΩX := Lηµ(Rν∗Ainf,X) and Ω̃X := Lηµ(Rν∗Ainf,X/ξ̃).

For the purpose of this paper, we merely view the above as objects in D(XZar, Ainf). The Ainf cohomology is
then defined as

RΓAinf
(X) := RΓ(XZar, AΩX).

By [BMS18, Theorem 1.8], all cohomology groups are Breuil–Kisin–Fargues modules (see [BMS18, Definition
4.22]). Analogous to Remark 3.1, using [BMS18, Proposition 4.13], we see that M i := Hi(RΓAinf

(X)) also
admits a natural exact sequence:

0 → M i
tors = M i[p≫0] → M i → M i

free → M i → 0,

with all modules appearing above, regarded as Ainf -complexes, perfect.
In general, (derived) reduction modulo an element certainly does not commute with Lη with respect to

another element. Therefore it is surprising to learn (see [BMS18, Theorem 9.2.(1)]) that the natural map
AΩX/ξ̃ → Ω̃X is a quasi-isomorphism! In [Bha18], at least if we work at the level of almost mathematics with
respect to [m♭

C ], one finds a conceptual proof for this fact.

Proposition 3.6 ([Bha18, Lemma 5.16 and Proposition 7.5]). The natural map AΩX/ξ̃ → Ω̃X is an almost,
with respect to [m♭

C ], isomorphism in D(XZar, A
a
inf).

Let us sketch the proof for later use.
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Sketch of proof in loc. cit. The Lemma 5.16 in loc. cit. provides such a natural map, as well as a criterion for
when the map is an almost isomorphism: it suffices for the cohomology sheaves of Rν∗(Ainf,X)/µ to be almost
ξ̃-torsionfree. Since ξ̃ = (µ+1)p−1

µ = µp−1 + . . .+ p · µ+ p ≡ p modulo µ, it is equivalent to these cohomology
sheaves being almost p-torsionfree. This later claim follows from Theorem 4.14 and Lemma 7.1 in loc. cit. □

The above admits a direct generalization.

Proposition 3.7. Define Ω̃
(n)
X := Lηµ(Rν∗Ainf,X/ξ̃n) ∈ D(XZar, Ainf). Then the natural map AΩX/ξ̃

n → Ω̃
(n)
X

is an almost, with respect to [m♭
C ], isomorphism in D(XZar, A

a
inf).

Proof. Using again [Bha18, Lemma 5.16], we are reduced to showing that the cohomology sheaves of
Rν∗(Ainf,X)/µ are almost ξ̃n-torsionfree. Since this is equivalent to these sheaves being almost ξ̃-torsionfree,
we are done thanks to the proof of Proposition 3.6. □

Lemma 3.8. Set M i := Hi(RΓAinf
(X)), then there exists an N ≫ 0 such that M i[ξ̃∞] = M i[ξ̃N ]. Moreover

M i[ξ̃∞] is a finitely presented coherent Ainf-module.

Proof. By Remark 3.5, there exists an m ∈ N such that the torsion submodule in M i is given by M := M i[pm],
which is a perfect complex. In particular, it is finitely presented. Using [BMS18, Lemma 3.26], we know that
Wm(O♭

C) is a coherent ring. By [Sta25, Tag 05CX], we see that M is a coherent Wm(O♭
C)-module. Therefore

we are reduced to showing: if M is a finitely presented Wm(O♭
C)-module, then there exists an N ≫ 0 such

that M [ξ̃∞] = M [ξ̃N ]. Indeed, we may then apply [Sta25, Tag 05CW] to see that M [ξ̃N ] = ker(M
ξ̃N−−→ M) is

a finitely presented coherent Wm(O♭
C)-module.

Let us prove the above claim, by induction on the smallest power pm of p that annihilates M . If M is
annihilated by p, this follows from the fact that O♭

C is a rank one valuation ring. Since Wm(O♭
C) is a coherent

ring, we know that both Q := M [p] and M/Q ∼= Im(M
·p−→ M) are finitely presented Wm(O♭

C)-modules. By
induction, if m > 1, we see that the ξ̃∞-torsion parts in both Q and M/Q are annihilated by ξ̃N

′
for some

N ′ ≫ 0. By the snake lemma, there is a natural exact sequence

0 → Q[ξ̃∞] → M [ξ̃∞] → M/Q[ξ̃∞].

One immediately sees that M [ξ̃∞] is annihilated by ξ̃2N
′
, hence we are done. □

The following is inspired by the proof of [Min21, Lemma 5.1].

Proposition 3.9. Let i > 0 and set M i := Hi(RΓAinf
(X)), then M i[ξ̃∞] is almost, with respect to [m♭

C ],
annihilated by µi−1. In particular, let Jinf ⊂ Ainf be the annihilator of M i[ξ̃∞], then we have an inclusion
µi−1 · [m♭

C ] ⊂ Jinf .

Proof. Let n be an arbitrary positive integer. Recall [BMS18, Corollary 6.5] that the Lη functor commutes
with canonical truncation. Applying [BMS18, Lemma 6.9], we see that there is a commutative diagram in
D(XZar, A

a
inf):

τ≤(i−1)AΩX
//

f1

��

τ≤(i−1)Ω̃
(n)
X

f2
��

τ≤(i−1)Rν∗(Ainf,X) //

g1

[[

τ≤(i−1)Rν∗(Ainf,X/ξ̃n),

g2

ZZ

where both horizontal arrows are induced by τ (i−1) applied to the (derived) reduction modulo ξ̃n map, and
the composition of fj and gj in either direction is µi−1 for j = 1, 2.

By [Sch13, Theorem 5.1 and proof of Theorem 8.4], we get almost isomorphisms

RΓ(Xét,Zp)⊗Zp Ainf
∼= RΓ(Xproét,Ainf) and RΓ(Xét,Zp)⊗Zp Ainf/ξ̃

n ∼= RΓ(Xproét,Ainf/ξ̃
n)

https://stacks.math.columbia.edu/tag/05CX
https://stacks.math.columbia.edu/tag/05CW
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with respect to [m♭
C ]. Now we take (i− 1)-st cohomology of the diagram above, and arrive at the following

commutative diagram of almost Ainf -modules:

Hi−1
Ainf

(X) //

f1

��

Hi−1(X, Ω̃
(n)
X ) ∼= Hi−1(RΓAinf

(X)/ξ̃n)

f2

��
Hi−1(Xét,Zp)⊗Zp

Ainf
// //

g1

YY

Hi−1(Xét,Zp)⊗Zp
Ainf/ξ̃

n,

g2

ZZ

where the identification of top-right item uses Proposition 3.7, and the composition of fj and gj in either
direction is µi−1 for j = 1, 2. Since the cokernel of the top arrow is, as an almost Ainf -module, given by
Hi

Ainf
(X)[ξ̃n], we see that Hi

Ainf
(X)[ξ̃n] is almost annihilated by µi−1. By Lemma 3.8, we can choose n large

enough so that Hi
Ainf

(X)[ξ̃n] = Hi
Ainf

(X)[ξ̃∞]. □

Lemma 3.10. Let R be a coherent ring, and let M be a finitely presented R-module. Then the annihilator
ideal of M is finitely presented.

Proof. Choose generators xi ∈ M , each generates a finitely generated submodule Ni := R ·xi ⊂ M . By [Sta25,
Tag 05CX], the module M is coherent, hence the Ni’s are all finitely presented. Hence we see that each xi has
a finitely generated annihilator ideal Ji. As R is coherent, they are automatically finitely presented. Finally,
it suffices to show that the intersection of two finitely presented ideals in R is again finitely presented. This
follows from applying [Sta25, Tag 05CW] to J1 ∩ J2 = ker(J1 → R/J2). □

Corollary 3.11. With setup and notation as in Proposition 3.9. The ideal Jinf ⊂ Ainf is a finitely generated
ideal containing some power of p, therefore we in fact have µi−1 ∈ Jinf .

Proof. By Lemma 3.8 and its proof, we see that M i[ξ̃∞] is a finitely presented Wm(O♭
C)-module, and the

ideal Jinf is the preimage under the projection Ainf
mod pm

−−−−−→ Wm(O♭
C) of the annihilator ideal J ′ ⊂ Wm(O♭

C)

of M i[ξ̃∞]. Hence it suffices to know that J ′ is finitely presented, which follows from combining Lemma 3.8
and Lemma 3.10.

It remains to show that µi−1 ∈ J ′, which is equivalent to Wm(O♭
C) = ker(Wm(O♭

C)
·µi−1

−−−→ Wm(O♭
C)/J

′).
Using [Sta25, Tag 05CW] we see that the kernel is a finitely generated ideal. By Proposition 3.9, we see this
finitely generated ideal contains the image of [m♭

C ], therefore it must be the unit ideal. □

4. Applications

Throughout this section, let X be a smooth proper formal scheme over Spf(OK). In this section, we deduce
consequences of the previous sections. We begin with an auxilliary lemma.

Lemma 4.1. Let C be a complete algebraically closed nonarchimedean extension of Qp. Let vC♭ be the
valuation on the tilt C♭, normalized so that vC♭(p♭) = 1. Let j > 0 and consider the Teichmüller expansion

µj =
∑
i≥0

pi · [x(j)
i ] ∈ W (O♭

C),

then we have vC♭(x
(j)
jℓ ) = j · p

pℓ(p−1)
for any ℓ ∈ N.

Proof. Recall that the addition in (p-typical) Witt vectors of a perfect ring R is defined in the following
manner. First there are universal polynomials Qi(X,Y ) ∈ Z[X,Y ] defined inductively by

Xpn

+ Y pn

=

n∑
i=0

piQpn−i

i .

Then we have
[x] + [y] =

∑
i≥0

pi · [Qi(x
1/pi

, y1/p
i

)] in W (R)

for any x, y ∈ R. We can inductively see that

https://stacks.math.columbia.edu/tag/05CX
https://stacks.math.columbia.edu/tag/05CW
https://stacks.math.columbia.edu/tag/05CW
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• Each Qi(X,Y ) is a homogeneous degree pi polynomial;
• Q0(X,Y ) = X + Y ;
• whenever i > 0 there is an expansion of the form Qi(X,Y ) =

∑
1≤m≤pi−1 amXmY pi−m with

a1 = api−1 = 1.

For xi := x
(1)
i , we have from the above two expansions

[ϵ] +
∑
i>0

pi[Qi((ϵ− 1)1/p
i

, 1)] = [ϵ− 1] + 1 = [ϵ] + (−1) ·
∑
i>0

pi[xi],

and x0 = ϵ− 1. In particular, we see that

(−1) ·
∑
i>0

pi[Qi((ϵ− 1)1/p
i

, 1)] =
∑
i>0

pi[xi].

We claim that our lemma follows from this equality, together with the discussions of “Newton polygon” in
[FF18, Subsection 1.5].

Let us first summarize necessary definitions and facts concerning Newton polygons: In [FF18, Definition
1.5.2], to any element y =

∑
i≥0 p

i · [yi] ∈ Ainf , the authors define N ewt(y) to be the function R → R ∪ {∞}
whose graph is the highest convex non-increasing polygon below the points {(n, vC♭(yn)) | n ∈ N}. By how
N ewt(y) is defined, we see that if (n, vn) is a turning point of its graph, then vC♭(yn) = vn. On [FF18, p. 20],
the authors conclude that N ewt(y · z) = N ewt(y) ∗ N ewt(z), where the operation ∗ of convex functions is
defined on [FF18, p. 18]. Using this, one checks that N ewt(u · y) = N ewt(y) if u is a unit.

Now we are ready to prove the claim for j = 1: Using the previous paragraph, we see that

N ewt(
∑
i>0

pi[xi]) = N est(
∑
i>0

pi[Qi((ϵ− 1)1/p
i

, 1)]).

By the third observation on these Qi’s, we have vC♭(Qi((ϵ− 1)1/p
i

, 1)) = p
pi(p−1) for all i > 0. So the Newton

polygon goes precisely through {(n, p
pn−1(p−1) ) | n ∈ N} for all n ≥ 1, and these points are all turning points.

In the end we deduce that vC♭(xi) =
p

pi(p−1) for all i > 0 as well.
The j = 1 case implies the general case, as follows: Chasing through the definition of ∗, the graph of

N ewt(yj) is the original graph of N ewt(y) scaled by j-times. Therefore the turning points of N ewt(µj) are
given by {(j · n, j · p

pn−1(p−1) ) | n ∈ N}, finishing the proof. □

With the above preparation, we can prove the following.

Theorem 4.2. Let i > 0, denote Mi := Hi
∆(X/S), and let J be the annihilator ideal of Mi

n[u
∞]. Let ρ be

defined by J + (u) = (u, pρ). If e · (i− 1) < pn(p− 1), then ρ ≤ (i− 1) · n.

By [LL23, Corollary 3.8 or Remark 3.9], the M1 is always finite free. Therefore in the following proof, we
always assume that i ≥ 2, hence (i− 1) > 0. So we may summon Lemma 4.1 for j = (i− 1).

Proof. Let X := XOC
, and set M i := Hi(RΓAinf

(X)). After choosing compatible p-power roots of π in OC ,
we get an element π♭ ∈ O♭

C (see Notations 3.4). We may consider the map of prisms which is p-completely
faithfully flat:

f : (S = W [[u]], (E)) → (Ainf , (ξ)),

with f(u) = [π♭]. By [BS22, Theorem 1.8.(5) and Theorem 17.2], we get a canonical isomorphism Mi ⊗S,φ◦f
Ainf

∼= M i. Using the p-completely flatness of f , together with structural results mentioned in Remark 3.1
and Remark 3.5, we also get Mi[u∞] ⊗S,φ◦f Ainf

∼= M i[ξ̃∞]. In particular, using again the p-completely
flatness of f , the annihilator ideal Jinf of M i[ξ̃∞] is given by (φ ◦ f)(J) ·Ainf .

Now suppose that ρ > (i − 1) · n, then we have J ⊂ (u, p(i−1)·n+1), consequently Jinf ⊂ J ′
inf :=

([(π♭)p]), p(i−1)·n+1). Notice that an element x =
∑

m≥0 p
m · [xm] ∈ Ainf lies in J ′

inf if and only if vC♭(xm) ≥ p
e

for all m ≤ (i− 1) · n.
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Corollary 3.11 says that µi−1 ∈ Jinf . Therefore by the above paragraph, in the Teichmüller expansion
of µi−1 =

∑
m≥0 p

m · [x(i−1)
m ], we must have vC♭(x

(i−1)
m ) ≥ p

e for all m ≤ (i− 1) · n. On the other hand, by
Lemma 4.1 we have

vC♭(x
(i−1)
(i−1)·n) = (i− 1) · p

pn(p− 1)

contradicting with the assumption e · (i− 1) < pn(p− 1). □

In practice, it is also important to understand the cohomology of RΓ∆(X/S)/Lpn). The above proof no
longer works in this generality, but we have arguments purely from commutative algebra, at the expense of
getting slightly worse bound.

Theorem 4.3. Let n ∈ N ∪ {∞} and let i > 0, denote Mi
n := Hi(RΓ∆(X/S)/Lpn)) (where n = ∞ means

that we do not perform the reduction at all), and let J be the annihilator ideal of Mi
n[u

∞]. Lastly, let σ and ρ
be defined by J + (p) = (p, uσ) and J + (u) = (u, pρ), we have

(1) inequalities σ ≤ ⌊ e·(i−1)
p−1 ⌋ and ρ ≤ d(e, i− 1);

(2) a belonging p(ρ+i)·σ ∈ J ; and
(3) an inclusion (u, p)(ρ+i)·σ2 ⊂ J .

Proof. Using Proposition 3.2, the statement (1) follows from Proposition 2.15, the statement (2) follows from
Proposition 2.16, whereas the statement (3) follows from the combination of (1) and (2). □

In [LL23] one finds results relating pathologies in p-adic geometry with u-torsion in prismatic cohomology,
here let us update the conclusions with our new estimates.

Proposition 4.4. Assume that the formal scheme X has an OK-point. Let f : Alb(Xk) → Alb(XK)k be the
natural map discussed in the beginning of [LL23, Subsection 4.1]. Then ker(f) is pn-torsion if e < pn(p− 1).

Proof. This follows from combination of Theorem 4.2, [LL23, Proposition 4.1] and [LL23, Theorem 4.2]. □

Proposition 4.5. Let C be the completion of an algebraic closure of K, let n ∈ N ∪ {∞} and let i > 0,
consider the specialization map

Spin : H
i
ét(Xk̄,Z/pn) → Hi

ét(XC ,Z/pn)

discussed in the beginning of [LL23, Subsection 4.2] (here again n = ∞ means that we do not perform reduction
at all). Then ker(Spin) is pd(e,i−1)-torsion.

Proof. This follows from Theorem 4.3 and [LL23, Theorem 4.14]. □

From now on, we use the notation from Remark 3.1. Let us observe that one can control Mi in terms of
Mi/pN for some N ≫ 0.

Lemma 4.6. Let M be any finitely generated S-module admitting exact sequences as in Remark 3.1, let pm
be such that it annihilates both Mtors and M, then there is an exact sequence:

0 → Mtors ⊕M → M/pN → (M)∨∨/pN → M → 0,

for any N ≥ 2m. In particular, there is an identification M/pN [u∞] ≃ M[u∞]⊕M whenever N ≥ 2m.

Proof. For any natural number n, we have canonical exact sequences:

0 → Mtors/p
n → M/pn → Mtf/p

n → 0,

0 → M[pn] → Mtf/p
n → (M)∨∨/pn → M/pn → 0.

The second sequence implies that Mtf/p
n[u∞] ∼= M[pn], with the natural transitions map from (n + 1)-st

level to n-th level on the left hand side identified with the multiplication by p map on the right hand side.
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Now let us denote Nn := {x ∈ M/pn | u≫0x ∈ Mtors/p
n ⊂ M/pn}, then we have a canonical isomorphism

(M/pn) /Nn
∼= (Mtf/p

n) /M[pn] and commutative diagrams of exact sequences:

0 //Mtors/p
n+1

mod pn

��

// Nn+1

��

//M[pn+1]

·p
��

// 0

0 //Mtors/p
n // Nn

//M[pn] // 0.

If we consider the transition map from the N -th level to the m-th level, we get a splitting NN ≃ Mtors ⊕M.
The two sequences in the beginning combine into

0 → Nn → M/pn → (M)∨∨/pn → M/pn → 0.

This finishes the proof. □

Corollary 4.7. Let J ′ be the annihilator of Mi with i > 0, and let ρ′ be such that J ′ + (u) = (u, pρ
′
). Then

we have ρ′ ≤ d(e, i− 1).

Proof. Since we have a natural injection Mi/pn ↪→ Mi
n, this follows from Lemma 4.6 and Theorem 4.3. □

Lastly we present our ultimate application:

Theorem 4.8. There exists a constant c(e, i) depending only on ramification index e and cohomological degree
i > 0, such that if the Hi

ét(XC ,Zp)tors is annihilated by pm, then the Hi
crys(Xk/W )tors is annihilated by pm+c.

Proof. By [BS22, Theorem 1.8.(1)&(5)], we have a natural exact sequence:

0 → Mi/u → Hi
crys(Xk/W )⊗W,φ−1 W → Mi+1[u] → 0.

By Theorem 4.3, we see that the third term is annihilated by pd(e,i). We claim that
(
Mi/u

)
tors

is annihilated
by pm+2·d(e,i−1). Our theorem follows from this claim, by taking c = 2 · d(e, i− 1) + d(e, i).

To see our claim: By Remark 3.1, there is a natural exact sequence:

0 → Mi
tors/u →

(
Mi/u

)
tors

→
(
Mi

tf/u
)
tors

∼= Mi[u] → 0.

By Corollary 4.7, we see that the third term above is annihilated by pd(e,i−1). We have reduced our claim to:
the Mi

tors/u is annihilated by pm+d(e,i−1).
We have an exact sequence:

0 → Mi[u∞] → Mi
tors → Mi

tors,u−tf → 0,

hence the following exact sequence:

0 → Mi[u∞]/u → Mi
tors/u → Mi

tors,u−tf/u → 0.

By Theorem 4.3 (with n = ∞), we see that the first term above is annihilated by pd(e,i−1). Lastly by combining
[BS22, Theorem 1.8.(5) and Section 17] and [BMS18, Theorem 1.8.(iv)], we see that there is a (non-canonical)
isomorphism Mi

tors,u−tf [1/u] ≃ Hi
ét(XC ,Zp)tors⊗Zp S[1/u], therefore Mi

tors,u−tf is annihilated by pm, finishing
our proof. □

In the above, one could improve the constant c slightly by replacing the bound obtained in Theorem 4.3
with Theorem 4.2 at several places. However we feel that the constant c obtained via this method is unlikely to
be optimal anyway, so we do not choose to optimize the bound in the proof to prevent complicating notations.
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