BOUNDING CRYSTALLINE TORSION FROM ETALE TORSION

OFER GABBER AND SHIZHANG LI

ABsTrRACT. In this note, we prove that given a smooth proper family over a p-adic ring of integers, one gets
a control of its crystalline torsion in terms of its étale torsion, the cohomological degree, and the ramification.
Our technical core result is a boundedness result concerning annihilator ideals of ©°°-torsion in Breuil-Kisin
prismatic cohomology, which might be of independent interest.
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1. INTRODUCTION

Let p be a prime. Let Ok be a complete DVR of mixed characteristic (0,p) with perfect residue field
k. Let X be a smooth proper formal scheme over Spf(Of). We are interested in the interplay between
two torsion phenomena associated with X: the étale torsion Hét(XR,Zp)tors and the crystalline torsion
HY o (Xe/W (k))tors- In Bhatt-Morrow—Scholze’s first paper [BMSIS], one learns the following:

crys

Theorem 1.1 (|[BMSI8| Theorem 1.1.(ii)]). There is an inequality
length (HY, (X, Zp)tors) < length (H o (X /W (K))tors) -
In particular, if H, (X /W (k))tors = 0, then HL, (X, Zp)tors = 0.

crys

It is natural to wonder about the converse question: if Hét(é\,’ %+ Zp)tors = 0, then what can we say about
H., (X /W ())tors? The Kiinneth formula and examples in [BMSI8), Section 2] shows that one cannot get any

bound on the length of the H: (Xk/W (k))tors. In this paper we show that one can get a bound of the exponent

crys

of the H  (Xk/W (k))tors, defined as the smallest natural number m such that p™ - Hérys(Xk/W(k‘))torS =0.

crys

Theorem 1.2 (= Theorem[L.8). There is a constant c(e, i) depending only on the ramification index e = v (p)
and the cohomological degree i > 0, such that there is an inequality

eXp(Hirys(Xk/W)torS) < exp(Hét (X, Zp)tors) + c(e, 7).
Our technical tool is a generalization of some results in [LL23], concerning the annihilator ideal of u>-torsion
in prismatic cohomology of X. This is the content of our Section [2] In Section [d] we give some applications of
the bound of aforementioned annihilator ideals, and end with a proof of the above theorem.

Notations and Conventions. Let k be a perfect field of characteristic p, let W = W (k) be its (p-typical)
Witt ring. Denote & := W [u] equipped with (u, p)-adically continuous Frobenius ¢: & — & such that ¢|w is
the usual Witt vector Frobenius and ¢(u) = uP. Lastly let E(u) € & be an Eisenstein polynomial of degree e.
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2. SOME COMMUTATIVE ALGEBRA ARGUMENTS
Throughout this section, we shall consider the following situation.

Situation 2.1. Let J C G be an ideal and let j € N, satisfying

(1) the ideal J is cofinite, namely (p,u)" C J for some N; and
(2) we have a containment relation E7 - J C ¢(J) - &.

In this situation, let us denote J + (p) = (p,u?) and J + (u) = (u, p”). It is easy to see that o < L%J, see
for instance the proof of [LL23], Corollary 3.4].

The aim of this section is to give explicit estimate of p in terms of e and j.
2.1. Argument one. In this subsection, we present the first argument.
Notation 2.2. Let c(a,b) := min{c € N | p¢ € (u®, E?)}.
Lemma 2.3. We have that c¢(a,b) < [2] +b— 1.
Proof. By assumption E = u® + p - unit, so p € (u¢, E). More generally we have p*t¥~! € (u®, EY). O
Lemma 2.4. Let J C & and j € N be as in Situation . Suppose that J + (u®) C (u®,pV), then

J C (u?, p™™ (O’Nfc(A’j))) for any natural number A < pa.
Proof. In the ring R := &/u®, we have
peA)  JRC EV - JRC @(J)-RC (pV).
Our claim follows from the fact that the sequence (u,p) is S-regular. g

Proposition 2.5. Let J C & and j € N be as in Situation[2.1l Let ay,as,...,a, be a sequence of integers
satisfying

(1) ap =1;

(2) a; <p-a;_1;

(3) an > £4.

Then p <> i, c(ai, ).
In particular, if e - j < p™(p — 1), then we may choose a; = p* fori < (n—1) and a,, = |- | + 1, hence

p—1
n—1pt F=hal ‘
p< Zz’:ll L%J + L%J +ny.

Proof. The second sentence follows from the first one and Lemma as [z] —1 < x. To see the first sentence:
Let J + (u) = (u,p”), and assume to the contrary that p > Y7 | ¢(a;, j). Then applying Lemma m, we see
that J 4 (u®) C (u,pP~c@1:9)). Applying Lemmaagain7 we see that J + (u?2) C (u®2, pp=clag)=claz.)),
Repeating the above, we finally see that J + (u%) C (u®,p>°). But this contradicts to the fact that

J 4 (p) = (p,u”) with 0 < =5 < an. -

2.2. Argument two. In this subsection, we present the second argument. Throughout the subsection, let
J C & and j € N be as in Situation [2.1

Lemma 2.6. Let r € [0,00) be a real number, the following map
v 6\ {0} = R, ’UT(Z au') = min{ord,(a;) +i-r}

defines an additive valuation.

Proof. 1t is easy to check that minimum is always attained, one can check the triangle inequality

" ((Z a’) + (gj bﬂﬁ)) > min (w(zij au’), U"(Xi: bﬂ/)>
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using the definition. Lastly we need to check multiplicativity:

Uy ((Z agu') - (Z bﬂﬁ)) = UT(Z au’) + vr(z biu').

One checks directly that the multiplicativity holds true if one of the power series is just a monomial. Now let
a=min{i € N | ordy(a;) +i-r =v,(3, a;u’)} and B := min{i € N | ord,(b;) + i -r = v.(>, b;u’)}. Using
the definition, one checks that

Uy (Z au') - (Z biu') | = UT(Z au') + ’UT(Z biu').
i>a i>B i i
Finally, by combining
e the case of one of the power series being a monomial;
e the decompositions »_; a;u’ = 32, au' + 2,5, au’ and 37 bu' =37, sbiu’ + 37,5 5 bju’ of the
two power series; - -
e the above equality; and
e the triangle inequality,

one arrives at the multiplicativity statement which finishes the proof. O

One may view the ring & as the analytic functions bounded by 1 on the open unit disc ]D)?,V[1 or then the

valuation v, corresponds to the Gauss norm on the radius p~" disc (the absolute value is normalized so that
Ip| = p~!). Notice that for r > 0, we can take a rational number s € (0, 7], so the said Gauss norm is a rank 1
point on the closed disc of radius p~*® around 0. Therefore, we may view it as a rank 1 point on the open unit
disc, giving rise to a norm on &[1/p] whose restriction to & is bounded by 1.

Notations 2.7. For any co-finite ideal I C &, let fi(r) :== v,.(I), viewed as a function fr: [0,00) — R>g. Let
I™on .= the ideal generated by {au’ |, a;u’ € I'}.

Namely for every power series in I, we extract out all of its monomial terms, then we use all these monomial
terms of all elements in I to generate a (most likely larger) ideal. Note that I™°" is generated by finitely
many monomial terms as G is Noetherian.

Lemma 2.8. Let I C & be a co-finite ideal, we have natural numbers o and p satisfying I + (p) = (p,u°)
and I + (u) = (u,p?). Then the function fr satisfies the following:
(1) We have an equality fr = frmon;
(2) The function fr is concave and continuous;
(8) The function fr is piecewise linear, on each interval it is given by a - r + b with both a and b natural
numbers;
(4) There exists an € > 0, such that

Fr(r) = {a~r, r € [0, ¢,

p, T E[l/e,00).
(5) We have an equality f,(r) = fr(p-r).

Proof. (1) and (5) follows from the definition of v,. Our assumption implies that

mon 2 —1
I =(p’,a1-u,as-u’, ... a5_1u’" " u’),

where ord,(a;) > 0 (and a; is allowed to be 0). For each of the generators above, if we look at their v, as
a function in r, we simply get a linear function with a natural number slope. The function f; = frmon is
minimum of the above collection of linear functions, this immediately gives us (2) and (3). Using (1) and the
definition of v,, we also see that v,(I) = v, (u?) if r is sufficiently near 0 and v,.(I) = v, (p”) if r > 0, which
proves (4). O

Lemma 2.9. Let J C & and j € N be as in Situation[2.1. We have
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(1) the function g(r) = v,(E7) = min ((e j) - r,j) ; and
(2) an inequality f;(p-r) < fi(r) 4+ g(r).

Proof. (1) easily follows from our assumption on the degree e Eisenstein polynomial E. (2) follows from the

assumption E7 - J C ¢(J) - & and Lemma (5) O
Lemma 2.10. Let J C & and j € N be as in Situation[2.1 Define a piecewise linear function
. p-J

o-r, r € [0, a-(p71)] N

o . ; p-j p*-j

D T+]7 e [04(€i1)7 04(%,7'1)}

o . i p°-j p°-j

h(r) =<4 P* r+2g, Te [0‘(19*1)’ 0‘(17*1)} .

. ])n‘j p7l+1'j
rraR i sk LR ML P e s e ey

Then we have f;(r) < h(r).
We leave it to the readers to check that the h(r) above is continuous, concave and increasing.

Proof. Let us check inductively on each interval that f J(r) < h(r). For the first interval [0, #{1)]7 we need
to show f;(r) < o -r, this follows from Lemma [2.8§] . . Now we prove the induction step, so we assume
that f(z) < h(xz) whenever z € [0, %] and let r € [W’ %] Our assumption on r implies that

(%) < h(%) =t 5t (n—1)-j5. By Lemma. we see that
o
£ < fa(5 )+J_p

%—&—(n—l)j—i—j: r+n-j=h(r).

2la

Lemma 2.11. Let J C & and j € N be as in Situation , Then fi(r) = p whenever r > f

Proof. Let us denote by f/;(r) the left derivative of f(r), this is a piecewise constant, decreasing, eventually 0
function, which takes values in natural numbers, thanks to Lemma [2.8}(2)-(4). Therefore all we need to show
is that f’(r) = 0 for r > ” . Now Lemmalmphes that f(r) - (r —2) < fs(r) — fs(3) < j. Therefore
f5(r) <1andis a natural number, hence must be 0. O

Proposition 2.12. Let J C & and j € N be as in Situation . Ife-j < p™(p—1), then we have

o ) =3 -
Pﬁ(m—Fn)JS(m—F”)J

n+1 ]

Proof. By Lemma [2.11} we have p = fJ( ) Since 0 < | = cJ | < p", we see that L T <P P

need to prove the first inequality). Now by Lemma m, we have

p-J p-J o p-j . o
<h <— ——+nj=(——F
( —1) (p—l) pt op—1 (p”*(p—l)

(and we only

p=1fs

2.3. Conclusions. Let us first extract a concrete estimate of p in a special case.

Proposition 2.13. Let J C & be as in Situation[2.1, with j =1, and let n € N.
(1) Ifp#2 and e < p™(p—1), then p < n.
(2) If p=2 and e < 2", then p < (n+ 1).

Note that when e < (p — 1), our statement follows from the proof of [LL23| Proposition 3.5]. So in the
proof below, we always assume further that e > (p — 1), in particular n > 1.

Proof. First let us assume that p # 2. Suppose that e < p"~1(p — 1)2, then by Proposition [2.12] we see that
the integer p < n + 1, therefore p < n. If p"~1(p — 1)2 < e < p"(p — 1), then
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=0forall0<i<(n—1)asp#2;
Stas | < ij—&—ﬂ = 0, as we have assumed that e > (p — 1).

o we have L%

Lz=

e similarly |2~

Therefore by Proposition [2.5] we have that p < n.
Now in case p = 2, the relevant formulas simplify. When 2" ! < e < 27 we get p < (n + 1) by
Proposition When e =271, we get p < (n + 1) by Proposition [2.12] O

Let us summarize the outcome of the previous two subsections.

Notation 2.14. For each pair of positive integers (e, j), we denote

n—1 le +1 e;jl
d(eaj) ‘= min (;I_Z;J + I_\%EJJ +n.]’(pntlp(p_1) —|—Tl) ])a

where n is the smallest natural number such that e - j < p™(p — 1).
Proposition 2.15. Let J C & and j € N be as in Situation[2.1, Then we have p < d(e, j).
Proof. Combine Proposition [2.5 and Proposition [2.12] O

2.4. Argument for boundedness. Lastly let us show that an additional condition gives rise to boundedness
of length of &/J.

Proposition 2.16. Let J C S and j € N be as in Situation [2.1 Assume moreover that there is an { € N
such that E* - o(J) C J, then plrtmax(G:0)o ¢ . The additional assumption implies that length(&/J) <
(p +max(j,£)) - o2, in particular (u,p)<p+max(] D)% .

Proof. For any ideal I C &, we denote (I : p) :={f € & | p- f € I'}. Alternatively, the ideal is defined via the
following exact sequence:

0= T:p)—>6 L6/

Since (F,p) is a regular sequence, one checks that E - (I : p) = (E - I : p). Using the fact that ¢ is flat, one
checks that o(I : p) = (¢(I) : p). Therefore if we let Jy = J and inductively define J; = (J;_; : p) for all § > 1,
then we can make the following observations:

(1) We have &/.J, %p" -6/ J, hence &/(J, + (p)) ? %é/‘],,

(2) The ideals J,, again satisfy conditions: E7 - (=) C ¢(—)-& and E* - p(—) C ().
Our task is to show that J,, = & when n > (p+max(j,¥))-0. Letting o,, and p,, be defined by J,,+(p) = (p, u’")
and J, + (u) = (u,p), it suffices to show that 0; — 04 p1max(je) > 1. Since p, is non-increasing, using the
observation (2) above, it suffices to prove the above with i = 0.

Suppose to the contrary we have 0 < 09 = ... = 0, ymax(j,¢), We need to deduce a contradiction. This

assumption, together with the observation (1) above, implies that multiplication by p map on A = &/J
induces isomorphisms:

A/pA L pA/p*A Dy Dy primax(Gh) g jppimax(GOTL 4

Weierstrass preparation and the definition of o implies the existence of a polynomial f € J such that
f =u’ mod p. Since (f,p) is a regular sequence, one checks that the p-adic filtration on B := &/ f also

satisfies B/pB % pB/p*B % .... Let us now look at the map &/(f, prtmax(@0+1) _, G /(J, pptmax(G.O+1y,
it is an isomorphism modulo p so, by the above knowledge of p-adic filtrations on both sides, it is an

isomorphism. Therefore we have J = (f) mod pPT™2xU-0O+1 Moreover the definition of p implies that the

constant term of f must have p-adic valuation p. Now our conditions imply that there exists polynomials
P(u), Q(u) € W/prtmax(G:O+1[y] such that we have equalities

E(u) - f = ¢(f) - P(u) and E(w)* - o(f) = - Q(u)
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in W/pptmax(:O)+1[y]. Now the constant term of left hand side of both equations are nonzero in W/pPmax(i,0)+1,

therefore the Newton polygon of E(u)? - f is the same as that of ¢(f)- P(u) where P(u) € W/[u] is an arbitrary
lift of P(u). Consequently we see that there is an inclusion of sets:

{p-adic valuations of roots of ¢(f)} C {p-adic valuations of roots of f} U{1/e}.
Similarly we also have an inclusion of sets:
{p-adic valuations of roots of f} C {p-adic valuations of roots of ¢(f)} U {1/e}.
Since we have an equality of subsets of Q:
1/p - {p-adic valuations of roots of f} = {p-adic valuations of roots of p(f)},
we arrive at the following contradiction:
{p-adic valuations of roots of f} U {1/e} = (1/p - {p-adic valuations of roots of f})U {1/e}.

Therefore we see that we cannot have (p + max(j, £)) many o’s being all equal, which finishes the proof. O

3. SOME PRISMATIC COHOMOLOGY FACTS

In this section, we recall some statements concerning torsion in prismatic cohomology. Let X be a smooth
proper formal scheme over Spf(Ok).

Remark 3.1. Recall (see [BMSIS8| Proposition 4.3] and [BS22, Theorem 1.8.6]) that the prismatic cohomology
M’ .= H* (X/S), being a Breuil-Kisin module, admits the following canonical exact sequences:

0— M

tors

=M [p™=] — M — M, — 0,
0 — M — (MHVY — M — 0,

where (9t")VV is the double dual (or reflexive hull) of M’ which is finite free over & and 91 is supported at
the closed point (p, u) of Spec(&).

The following result is the main reason why we studied the kind of ideal J in Situation [2.1

Proposition 3.2. Let n € NU {cc}, denote M, := H(RL (X/&)/Ep"™)) (where n = oo means that we do
not perform the reduction at all). Then we have the following:
(1) For all i > 0, there exists maps F: oML — M, and V: M, — ©EMY, such that both F oV and
V o F are the same as multiplication by E;
(2) For all i > 0, multiplication by E'=" on 59, factors through a submodule of M.

In particular, when i > 0, let J be the annihilator ideal of MME [u>]. Then the ideal J and (j,€) = (i — 1,1)
satisfy the conditions in Situation[2-1] and Proposition [2.16,

When n = oo, the statement (1) follows from [BS22, Theorem 1.8.(6)]. In general, both (1) and (2) follow
from the observation made in [LL23| Proposition 3.2]. For the convenience of the readers, let us sketch the
argument below.

Proof. Recall that the Frobenius-twisted prismatic cohomology admits Nygaard filtrations, see [BS22, Section
15]. In particular, for any j > 0, there are natural maps RF(quyn,File/p”) — PRI (Xgsyn, /p™) and
PRI (Xgsyn, /P") — RF(quyn,File /p™) such that compositions either way are the same as multiplica~
tion by E7. Moreover these Nygaard filtrations admit divided Frobenius maps to prismatic cohomology:
R (Xyeyn, Filn? /p™) 25 RT (Xyeyn, /P")-

By [LL25, Lemma 7.8.(3)], the induced map H7 (Xysyn, Filn? /p™) <5 HI (Xyeyn, /p™) is an isomorphism.
This gives (1) by considering i-th Nygaard filtration. Also by [LL25, Lemma 7.8.(3)], when j > 0, the induced
map H7 (Xysyn, Fily? ™ /p™) RERLNS S (Xysyn, /p™) is injective. This gives (2) by considering (¢ —1)-st Nygaard
filtration. The last sentence is a consequence of (1) and (2). O
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Remark 3.3. Let us take the opportunity to correct an error in [LL25, Lemma 7.8.(3)]. The proof has a
gap in its last sentence: namely, when we use the same proof strategy to run the argument for proving the
derived mod p™ versions, the cohomological estimate might be off by 1 cohomological degree due to p-torsion
in Q;"/l( A/1y> and this p-torsion subsheaf is nonzero exactly when A/I contains p-torsion (and X/(A/I) has
relative dimension at least ¢ + 1). Therefore, by the proof strategy of loc. cit. we get the following conclusion:
The statement of [LL25| Lemma 7.8.(1)-(3)] is correct as is, but for their derived mod p™ analogs, one needs
an extra assumption that (A, I) is a transversal prism (namely A/I is p-torsion free). So, one just needs to
change the last sentence to “Moreover their derived mod p™ counterparts hold as long as (A, I) is transversal.
Fortunately, the Breuil-Kisin prism is an example of such, which justifies our usage of [LL25, Lemma 7.8.(3)]
in the above proof. Lastly we point out that in the proof of [LL25, Lemma 7.8.(3)], the authors give a reference
to [BS22 Theorem 15.2.(2)] for the cohomological estimate, but the more appropriate reference seems to be
rather [BS22, Theorem 15.3].

The rest of this section concerns the Aj,s cohomology defined in [BMS18, Theorem 1.8], let us recall some
key definitions and properties below.

Notations 3.4. Let C be the completion of an algebraic closure of K, with its tilt C® defined as follows:
Consider the ring of integers O¢ C C, then define Obc = lim,(O¢/p). Given a sequence of elements {x;};cn
of O¢ /p satistying z¥ = x;_1, we denote by z its corresponding element in O%. It is a fact that Obc is arank 1
valuation ring, whose fraction field Frac((’)bc) =: C" is an algebraically closed complete non-archimedean field
of equal characteristic p. The maximal ideal of O is given by m}, = {z € O% | zp € m¢/(p- Oc) C Oc/p}.
For more on this, we refer readers to [Sch12 Section 3.

Fix a choice of compatible p-power primitive roots of unity (1,(p,,(p2,---), then the sequence {(pi}ien

defines an element ¢ € OI’C. The Fontaine period ring Aj,¢ is defined as the (p-typical) Witt ring of Obc,

— o) ;

=28 in
m

equipped with Frobenius automorphism . The following two elements p =[] — 1 and & = ¢(&)
Ajn¢ are important to us.

In the rest of this section C' can be any algebraically closed complete non-archimedean field of mixed
characteristic (0, p).

Remark 3.5. Let X be a smooth proper formal scheme over Spf(O¢) with its rigid generic fiber X := X¢.
There is a natural map of sites v: Xproet — Xzar, then according to [BMSI8| Definition 8.1 and 9.1], one
defines

AQ:{ = L’l]H(RV*Ainf,X) and Qx = LT]M(RZ/*Ainﬁx/f).

For the purpose of this paper, we merely view the above as objects in D(Xzar, Aing). The Ajne cohomology is
then defined as

R‘FAinf (%) = RF(:{Zara AQX)
By [BMS18, Theorem 1.8], all cohomology groups are Breuil-Kisin—Fargues modules (see [BMS18|, Definition

4.22]). Analogous to Remark using [BMSI8|, Proposition 4.13], we see that M® := HY(RI 4, (X)) also
admits a natural exact sequence:

0— M!

tors

= M'[p>°] - M* - M., — Mi—0,

with all modules appearing above, regarded as Aj,s-complexes, perfect.

In general, (derived) reduction modulo an element certainly does not commute with Ly with respect to
another element. Therefore it is surprising to learn (see [BMS18, Theorem 9.2.(1)]) that the natural map
AQx/ € — Qx is a quasi-isomorphism! In [Bhal8|, at least if we work at the level of almost mathematics with
respect to [mbc], one finds a conceptual proof for this fact.

Proposition 3.6 ([Bhal8, Lemma 5.16 and Proposition 7.5]). The natural map AQx /€ — Qx is an almost,
with respect to [m%], isomorphism in D(Xzar, AL,).

Let us sketch the proof for later use.
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Sketch of proof in loc. cit. The Lemma 5.16 in loc. cit. provides such a natural map, as well as a criterion for
when the map is an almost isomorphism: it suffices for the cohomology sheaves of Ry, (Aing,x)/p to be almost

g—torsionfree. Since 5: % =pP~l+ ...+ p-pu+p=pmodulo y, it is equivalent to these cohomology
sheaves being almost p-torsionfree. This later claim follows from Theorem 4.14 and Lemma 7.1 in loc. cit. O

The above admits a direct generalization.

Proposition 3.7. Define ﬁggn) = Lnlt(Ru*Ainf,X/g") € D(Xzar, Aint). Then the natural map Aﬂx/g" — ﬁg?)
is an almost, with respect to [m%], isomorphism in D(Xza., A ).

Proof. Using again [Bhal8, Lemma 5.16], we are reduced to showing that the cohomology sheaves of
Rv, (Aing,x )/ 1 are almost "-torsionfree. Since this is equivalent to these sheaves being almost £-torsionfree,
we are done thanks to the proof of Proposition O

Lemma 3.8. Set M := H'(RT' 5, (X)), then there exists an N > 0 such that Mi[£>°] = M[EN]. Moreover
M?[€%°] is a finitely presented coherent Ain-module.

Proof. By Remark there exists an m € N such that the torsion submodule in M? is given by M := M*[p™],
which is a perfect complex. In particular, it is finitely presented. Using [BMSI18| Lemma 3.26], we know that
W,,(0%) is a coherent ring. By [Sta25, Tag 05CX], we see that M is a coherent W,,(O%)-module. Therefore
we are reduced to showing: if M is a finitely presented Wm(ObC)—module, then there exists an IV > 0 such

that M[£>] = M[¢N]. Indeed, we may then apply [Sta25, Tag 05CW] to see that M[N] = ker(M i) M) is
a finitely presented coherent W, (O%)-module.

Let us prove the above claim, by induction on the smallest power p™ of p that annihilates M. If M is
annihilated by p, this follows from the fact that OC is a rank one valuation ring. Since W,, (O"c) is a coherent
ring, we know that both Q := M|[p] and M/Q = Im(M % M) are finitely presented W,,(O% )-modules. By

induction, if m > 1, we see that the §°°—tor510n parts in both @ and M/Q are annihilated by fN for some
N’ > 0. By the snake lemma, there is a natural exact sequence

0= Q[E™] — M[E®] — M/Q[E™].
One immediately sees that M [EOO] is annihilated by ?N /, hence we are done. O

The following is inspired by the proof of [Min21, Lemma 5.1].

Proposition 3.9. Let i > 0 and set M' := H{(RT4, (X)), then M'[€%] is almost, with respect to [m%],

annihilated by ;ﬂfl. In particular, let Jiny C Aint be the annihilator of M? [€°°], then we have an inclusion
ui_l . [mbc] C Jint-

Proof. Let n be an arbitrary positive integer. Recall [BMSIS8|, Corollary 6.5| that the Ln functor commutes
with canonical truncation. Applying [BMS18, Lemma 6.9], we see that there is a commutative diagram in

(%Zar’ Alnf)

rS-DAQy ——— = 75

()

<G-D Ry, (A, x ) —> 70D Ru, (Aing x /€™),

(i—1) Q(”)

where both horizontal arrows are induced by 70"~ applied to the (derived) reduction modulo E" map, and
the composition of f; and g; in either direction is p'~! for j = 1,2.
By [Schi3l Theorem 5.1 and proof of Theorem 8.4], we get almost isomorphisms

RT(Xst, Zp) ®z, Aint = RT(Xprost, Ain) and RT(Xeq, Zp) @z, Aing /€™ = RT(Xproct, Aint /E7)


https://stacks.math.columbia.edu/tag/05CX
https://stacks.math.columbia.edu/tag/05CW
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with respect to [mc] Now we take (i — 1)-st cohomology of the diagram above, and arrive at the following
commutative diagram of almost Aj,s-modules:

H L (X) —————= 11 (X,00) 2 (R4, (X)/€7)

() ()

H ™Y (Xet, Zp) ®z, Aing —> H'™ (X, Zy,) @z, Ainf/gna

where the identification of top-right item uses Proposition [3.7] m and the composition of f; and g; in either
dlrectlon is pi~! for j = 1,2. Since the cokernel of the top arrow is, as an almost Aj,;-module, given by
HY (% )[5”] we see that Hy (X )[5”] is almost annihilated by pi~!. By Lemma | we can choose n large

enough so that HY (X) [€n] = HY HY (X )[€]. -

Lemma 3.10. Let R be a coherent ring, and let M be a finitely presented R-module. Then the annihilator
ideal of M s finitely presented.

Proof. Choose generators z;; € M, each generates a finitely generated submodule N; := R-z; C M. By [Sta25]
Tag 05CX], the module M is coherent, hence the N;’s are all finitely presented. Hence we see that each z; has
a finitely generated annihilator ideal J;. As R is coherent, they are automatically finitely presented. Finally,
it suffices to show that the intersection of two finitely presented ideals in R is again finitely presented. This
follows from applying [Sta25l Tag 05CW]| to J; N Jo = ker(J1 — R/ J2). O

Corollary 3.11. With setup and notation as in Proposition[3.9. The ideal Jin C Aint is a finitely generated
ideal containing some power of p, therefore we in fact have =1 € Jiy.

Proof. By Lemma and its proof, we see that M°® [500] is a finitely presented W,,(0%)-module, and the

ideal Ji,¢ is the preimage under the projection Aj,¢ mod p” Wm(O%) of the annihilator ideal .J' C W, (O%)
of M*[¢%°]. Hence it suffices to know that J’ is finitely presented, which follows from combining Lemma
and Lemma [3.10)

It remains to show that ;*~! € J’, which is equivalent to W,,(O%) = ker(W,,(O%) N W, (0%)/J").
Using [Sta25, Tag 05CW| we see that the kernel is a finitely generated ideal. By Proposition we see this
finitely generated ideal contains the image of [mbc}7 therefore it must be the unit ideal. O

4. APPLICATIONS

Throughout this section, let X be a smooth proper formal scheme over Spf(Ok). In this section, we deduce
consequences of the previous sections. We begin with an auxilliary lemma.

Lemma 4.1. Let C' be a complete algebraically closed nonarchimedean extension of Q,. Let ves be the
valuation on the tilt C°, normalized so that Vb (pb) = 1. Let j > 0 and consider the Teichmiiller expansion

W=3"p[a"] € W(Or),
>0

then we have ves (T 535)) J- ;%(;%1) for any £ € N.

Proof. Recall that the addition in (p-typical) Witt vectors of a perfect ring R is defined in the following
manner. First there are universal polynomials Q;(X,Y") € Z[X,Y] defined inductively by

n .
=0

Then we have
=D P Qi M) in W(R)
>0

for any x,y € R. We can inductively see that


https://stacks.math.columbia.edu/tag/05CX
https://stacks.math.columbia.edu/tag/05CW
https://stacks.math.columbia.edu/tag/05CW
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e Each Q;(X,Y) is a homogeneous degree p* polynomial;

* Q(X,Y)=X+Y; ‘

e whenever ¢ > 0 there is an expansion of the form Q;(X,Y) = >3, -, am X™YP' =™ with
a1 = Qpi_1 = 1.

) , we have from the above two expansions

€+ 3 pQille = DM, ] = e~ 1+ 1= [ + (1) 3 o'l

i>0 >0

For z; = x;

and xg = € — 1. In particular, we see that

—1) -3 P Qil(e = DY D] =Y pifil.

>0 >0

We claim that our lemma follows from this equality, together with the discussions of “Newton polygon” in
[FF18, Subsection 1.5].

Let us first summarize necessary definitions and facts concerning Newton polygons: In [FEF18, Definition
1.5.2], to any element y = Y ,5,p" - [y;] € Aint, the authors define N'ewt(y) to be the function R — R U {oo}
whose graph is the highest convex non-increasing polygon below the points {(n, v (yn)) | 7 € N}. By how
Newt(y) is defined, we see that if (n,v,) is a turning point of its graph, then v (y,) = v,. On [EF18, p. 20],
the authors conclude that Newt(y - z) = Newt(y) * Newt(z), where the operation * of convex functions is
defined on [FF18| p. 18]. Using this, one checks that Newt(u - y) = Newt(y) if u is a unit.

Now we are ready to prove the claim for j = 1: Using the previous paragraph, we see that

Newt(ZPi[xi = Nest( Zp (e—1) 1 ;1))

>0 >0

By the third observation on these Q;’s, we have v (Q;((e — Hyr, 1)) = ﬁ for all ¢ > 0. So the Newton
polygon goes precisely through {(n, M%Ep—l)) | n € N} for all n > 1, and these points are all turning points.
In the end we deduce that v (x;) = Wll) for all ¢ > 0 as well.

The j = 1 case implies the general case, as follows: Chasing through the definition of %, the graph of
Newt(y?) is the original graph of Newt(y) scaled by j-times. Therefore the turning points of Newt(u’) are
given by {(j - n,j - ;7=rfy—3y) | n € N}, finishing the proof. O

With the above preparation, we can prove the following.

Theorem 4.2. Let i > 0, denote M = H' (X /&), and let J be the annihilator ideal of M [u™]. Let p be
defined by J + (u) = (u,p?). Ife- (i —1) <p™(p—1), thenp < (i—1)-n

By |[LL23, Corollary 3.8 or Remark 3.9|, the 9! is always finite free. Therefore in the following proof, we
always assume that ¢ > 2, hence (i — 1) > 0. So we may summon Lemma [£.1]for j = (i — 1).

Proof. Let X = Xo, and set M® := H (R[4, ,(X)). After choosing compatible p-power roots of 7 in O¢,
we get an element 7° € O% (see Notations . We may consider the map of prisms which is p-completely
faithfully flat:

[ (& =W, (E) = (Ains, (£)),

with f(u) = [7°]. By [BS22, Theorem 1.8.(5) and Theorem 17.2], we get a canonical isomorphism 9 ®g o
Ajnr =2 M?. Using the p-completely flatness of f, together with structural results mentioned in Remark
and Remark ﬁ, we also get M [u™] @ pof Aint = M* [g‘”] In particular, using again the p-completely
flatness of f, the annihilator ideal Ji,; of M* [g”] is given by (¢ o f)(J) - Aint.

Now suppose that p > (i — 1) - n, then we have J C (u,p®~D "), consequently Jins C Jl =
([(=*)P]), pli=1m+1). Notice that an element z = 3" p™ - [2n] € Aine lies in J/ ¢ if and only if ves () > 2
foralm<(i—1)-n -
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Corollary says that =1 € Jine. Therefore by the above paragraph, in the Teichmiiller expansion

of p'=t =37 0™ [ngfl)], we must have v (ngfl)) > 2 for all m < (i — 1) - n. On the other hand, by

Lemma (.1 we have

(i—1) . p
v Z,. =(z—-1) ——
C’"( (171).71) ( ) pn(p — 1)

contradicting with the assumption e- (i — 1) < p™(p — 1). O
In practice, it is also important to understand the cohomology of RI' (X /&)/Lp™). The above proof no

longer works in this generality, but we have arguments purely from commutative algebra, at the expense of
getting slightly worse bound.

Theorem 4.3. Let n € NU {oc} and let i > 0, denote M = H(RT (X/&)/Ep")) (where n = co means
that we do not perform the reduction at all), and let J be the annihilator ideal of M [u>°]. Lastly, let o and p
be defined by J + (p) = (p,u?) and J + (u) = (u,p”), we have

(1) inequalities o < L%j and p < d(e,i —1);

(2) a belonging pPT)7 € J; and

(3) an inclusion (u, p)P+do" c J.

Proof. Using Proposition the statement (1) follows from Proposition the statement (2) follows from
Proposition whereas the statement (3) follows from the combination of (1) and (2). O

In [LL23| one finds results relating pathologies in p-adic geometry with u-torsion in prismatic cohomology,
here let us update the conclusions with our new estimates.

Proposition 4.4. Assume that the formal scheme X has an O -point. Let f: Alb(Xy) — Alb(Xk) be the
natural map discussed in the beginning of [LL23| Subsection 4.1]. Then ker(f) is p™-torsion if e < p™(p — 1).

Proof. This follows from combination of Theorem [LL23l Proposition 4.1] and [LL23| Theorem 4.2]. O

Proposition 4.5. Let C be the completion of an algebraic closure of K, let n € NU {oo} and let i > 0,
consider the specialization map

Spfz: Hét(X];,Z/p”') - Hét(XC,Z/p")

discussed in the beginning of [LL23, Subsection 4.2] (here again n = oo means that we do not perform reduction
at all). Then ker(Sp’,) is p™©*=Y _torsion.

Proof. This follows from Theorem and [LL23L Theorem 4.14]. O

From now on, we use the notation from Remark Let us observe that one can control 9 in terms of
Mt /p™N for some N > 0.

Lemma 4.6. Let MM be any finitely generated G-module admitting exact sequences as in Remark[3]], let p™
be such that it annihilates both Miors and M, then there is an exact sequence:

0 = Miors @ M — M/pY — (MY /pN — MM — 0,
for any N > 2m. In particular, there is an identification M /pN [u™] ~ M[u>] © M whenever N > 2m.
Proof. For any natural number n, we have canonical exact sequences:

0— i):ntors/pn — E)ﬁ/pn — EIntf/pn — O,

0 — IM[P"] — Me/p"™ — (M)VY /p"™ — IM/p" — 0.

~

The second sequence implies that 9 /p" [u>] =2 M[p"], with the natural transitions map from (n + 1)-st
level to n-th level on the left hand side identified with the multiplication by p map on the right hand side.
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Now let us denote N, := {& € M/p" | u>°x € Miors/p"™ C M/p"}, then we have a canonical isomorphism
(M/p™) /M, =2 (Mg /p™) /M [p"] and commutative diagrams of exact sequences:

0——> i):ntors/pn%k1 mn-{-l ﬁ[thLl} —0
mod p"l \L i'?
0 —— iUttors/pn mn ﬁ[pn} - O

If we consider the transition map from the N-th level to the m-th level, we get a splitting My ~ Miors B M.
The two sequences in the beginning combine into

0— N, — M/p™ — (I)VY/p™ — M/p™ — 0.
This finishes the proof. O
Corollary 4.7. Let J' be the annihilator of M with i > 0, and let p' be such that J' + (u) = (u,p” ). Then
we have p’ < d(e,i —1).

Proof. Since we have a natural injection 9 /p™ < 9, this follows from Lemma [4.6| and Theorem O

Lastly we present our ultimate application:

Theorem 4.8. There exists a constant c(e, i) depending only on ramification index e and cohomological degree
i >0, such that if the Hét(XC7Zp)tors is annihilated by p™, then the Hi.  (Xi/W )iors is annihilated by p™*e.

crys
Proof. By |[BS22, Theorem 1.8.(1)&(5)], we have a natural exact sequence:
0 — M Ju — HL, o (X/W) Qo1 W — M [u] — 0.

crys

By Theorem we see that the third term is annihilated by p“(¢"). We claim that (9 /u), _is annihilated
by p™t2d(€i=1) " Qur theorem follows from this claim, by taking ¢ = 2 - d(e,i — 1) + d(e, 7).

To see our claim: By Remark there is a natural exact sequence:

0 — M/ u— (m?’/u) — (imif/u) =~ Mifu] — 0.

tors tors

By Corollary we see that the third term above is annihilated by p®(¢*~1). We have reduced our claim to:
the 9, /u is annihilated by pm+d(ei=1),
We have an exact sequence:
0 — M [u>] — M

tors

i
— mtors,u—tf — O’
hence the following exact sequence:

0— M’ [u™]/u — me Ju — Eméors,u_tf/u — 0.

tors

By Theorem (with n = 00), we see that the first term above is annihilated by piei=1)  Lastly by combining
[BS22, Theorem 1.8.(5) and Section 17] and [BMSIS8| Theorem 1.8.(iv)], we see that there is a (non-canonical)
isomorphism My, [1/u] = H, (Xo, Zyp )rors @z, S[1/u], therefore M, is annihilated by p™, finishing
our proof. O

In the above, one could improve the constant c slightly by replacing the bound obtained in Theorem
with Theorem [£:2) at several places. However we feel that the constant ¢ obtained via this method is unlikely to
be optimal anyway, so we do not choose to optimize the bound in the proof to prevent complicating notations.
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